Szakaszok és egyenesek a koordinátasíkon
Szakasz hossza, osztópontja, háromszög súlypontja Szakasz hossza: |AB|=(b-a)2 = |b-a| = (x1-x2)2+(y1-y2)2 (Pitagorasz tételéből). A szakasz felezőpontjának koordinátái: x= (x1+x2)/2 y= (y1+y2)/2 A szakasz adott arányú osztópontja: Az AB szakaszt m:n arányban osztó P ponttal létrehozott AP és PB szakaszhosszakra fennáll: AP:PB =m:n AP = mAB/(m+n) p=a+AP= a+m(AB)/(m+n)= a+m(b-a)/m+n= (ma+na+mb-ma)/m+n= (na+mb)/m+n. Ebből: x= (nx1+mx2)m+n, y= …