Informatika érettségi

A számítógépek fejlődése

A személyi számítógép története néhány évtizeddel ezelőtt kezdődött. E viszonylag rövid idő alatt a gépek teljesítménye hónapról hónapra ugrásszerűen nőtt. A jelenlegi asztali gépek teljesítménye már-már utópisztikusnak tűnik akár a három évvel ezelőtti eszközeink kapacitásához képest is.

A személyi számítógép kevesek által használt luxuscikkből mindennapi életünk részévé vált, jelentős társadalmi átalakulásokat vonva maga után. A számítógép- és szoftveripar ma a világgazdaság húzóágazatává lépett elő, emberek millióinak teremtve munkalehetőséget.

A kezdet kezdete

A számolást segítő eszközök története gyakorlatilag egyidős az emberiség történetével. Az ősember a számoláshoz eleinte az ujjait, később köveket, fonaldarabokat használt, az eredményt a barlang falába, csontba vagy falapokba vésve rögzítette.

A nagyobb számértékek megjelenésével kialakult az átváltásos rendszerű számábrázolás, a tízes, tizenkettes, majd a hatvanas számrendszer. Az egyik első eszköz, amely lehetővé tette az egyszerűbb műveletvégzést, az abakusz volt. Az abakuszt némileg módosítva a XVI. századig a legfontosabb számolást segítő eszközként használták, egyetemen tanították a vele való szorzás és osztás műveletsorát.

Mechanikus gépek

Az első „szériában gyártott” számológépet 1642-1644 között Blaise Pascal (1623-1662) készítette el, összesen hét példányban. A kor technikai szintjének megfelelően óraalkatrészekből építette meg a szerkezetet. A gép újdonsága, alapötlete az automatikus átvitelképzés megoldása volt. A számológéppel csak az összeadást és a kivonást lehetett elvégezni, a nem lineáris műveleteket – a szorzást és az osztást – nem.

Pascal számológépét Gottfried Wilhelm von Leibniz (1646-1716), német matematikus fejlesztette tovább. Ez a gép volt az első, amely közvetlenül végezte el az osztást és a szorzást, valamint kiegészítő művelet nélkül a kivonást. Az általa megépített összeadó-szorzó gép a szorzást visszavezette az összeadásra. Elsőként vetette fel a kettes számrendszer alkalmazásának gondolatát.

1833-ban Charles Babbage (1791-1871), angol tervező belekezdett fő műve, az analitikus gép elkészítésébe, mely anyagi és technikai nehézségek miatt soha nem épült meg. Terv szerint lyukkártyáról olvassa be az adatokat, utasításokat; adatokat tárol; matematikai műveleteket hajt végre; adatokat nyomtat.

A lyukkártya alkalmazásának amerikai úttörője Herman Hollericht (1860-1929) volt, aki egy adatrendező gépet (lyukkártyás statisztikai gép) dolgozott ki, melyet az 1890-esn népszámlálás adatainak feldolgozására használt. Kódolás felismerése: minden adathoz egy lyukat, így minden polgárhoz egy lyukkombinációt rendelt. Ő alakította meg a világ első számítástechnikai társaságát 1911-ben, amely 1924-ben IBM-re (International Business Machines) változtatta a nevét, s a számítógépeket sorozatban gyártotta.

Elektromechanikus gépek (0. generáció, kb. 1946-ig)

A németországi számítógépgyártás meghatározó egyénisége volt Konrad Zuse (1910-1995) mérnök, aki kezdetben jelfogós gépek építésével foglalkozott. Németországban a háború előtt a fegyverek előállítása kapcsán jelentősen megnőtt a számítási igény. 1939-ben készült el Zuse első nagy sikerű, jelfogókkal működő, mechanikus rendszerű számítógépe, a Z1. Ez az első gép, mely már a bináris számrendszerre épült. Külön helyezkedett el benne a tár és az aritmetikai egység, az utasítások bevitelére mikronyelvet alkalmazott.

1937-ben Alan Mathison Turing, angol matematikus kidolgozta az univerzális gép (program és programozható számítógép) modelljét: ha egy gép el tud végezni néhány műveletet, akkor bármilyen számításra képes).

Az 1900-as években a számítógépek fejlődésének meghatározó személyei közé soroljuk Wallace J. Eckert (1902-1971), valamint Howard Hathaway Aikent (1900-1973). Aiken kutatása a számítógépekben alkalmazott aritmetikai elemek számának jelentős növelésén keresztül a lyukkártyás gépek hatékonyságának növelésére irányult. Aiken és az IBM 1939-ben megállapodást kötött a közös fejlesztő munkára, amelynek eredményeképpen 1944-ben elkészült az elektromechanikus elven működő Mark-I.

A gépet egy papírszalagra sorosan felvitt utasítássorral lehetett vezérelni. A készülék kb. százszor volt gyorsabb, mint egy jó kézi számolókészülék, megállás nélkül dolgozott, egy nap alatt hat hónapi munkát végzett el.

Elektronikus gépek (1. generáció, kb. 1946-1954)

A háború alatt a haditechnika fejlődésével felmerült az igény a számítások precizitásának növelésére. Több gépet is kifejlesztettek, de ezek egyike sem bírta felvenni a versenyt a náluk kb. 500-szor gyorsabb ENIAC-kel (Electronic Numerical Integrator and Computer). A gép 30 egységből állt, minden egység egy meghatározott funkciót végzett el. A főleg aritmetikai műveletek végrehajtására tervezett egységek között 20 úgynevezett akkumulátor volt az összeadáshoz és a kivonáshoz, továbbá egy szorzó, egy osztó és egy négyzetgyökvonó egység is. A számokat egy IBM kártyaolvasóval összekapcsolt ún. konstans átviteli egységgel lehetett bevinni. Az eredményeket egy IBM kártyalyukasztóval kártyára lyukasztva adta ki.

Neumann-elvek

A mai értelemben vett számítógépek működési elveit a haditechnikában megszerzett tapasztalatok felhasználásával Neumann János (1903-1957), magyar származású tudós dolgozta ki. 1945. június 24-re készült el az a kivonat – First Draft of a Report on the EDVAC (Az EDVAC-jelentés első vázlata) címmel -, amely teljes elemzését adta az EDVAC tervezett szerkezetének. Tartalmazta a számítógép javasolt felépítését, a részegységek megépítéséhez szükséges logikai áramköröket és a gép kódját. A legtöbb számítógépet napjainkban is a jelentésben megfogalmazott elvek alapján készítik el. Fő tételeit ma Neumann-elvekként ismerjük.

Alapelvek (Neumann-elvek)

A számítógép olyan matematikai problémák megoldására szolgál, amelyekre az ember önállóan is képes lenne. A cél a műveletek végrehajtási idejének meggyorsítása. Ennek érdekében minden feladatot összeadások sorozatára kell egyszerűsíteni, ezután következhet a számolás mechanizálása.

  1. Soros működésű, teljesen elektronikus, automatikus gép

Neumann János rámutatott a mechanikus eszközök lassúságára és megbízhatatlanságára, helyettük kizárólag elektronikus megoldások használatát javasolta.

A gép a műveleteket nagy sebességgel, egyenként hajtja végre, melynek során a numerikusan megadott adatokból – az utasításoknak megfelelően – emberi beavatkozás nélkül kell működnie, és az eredményt rögzítenie.

  1. Kettes számrendszer használata

A kettes számrendszer használatának alapja az a tapasztalat, hogy az elektronikus működést könnyebb hatékony, kétállapotú eszközökkel megvalósítani. Ehhez elegendő egy olyan rendszer használata, mely két értékkel (igen/nem) dolgozik.

A tízes számrendszert a kettessel felváltva az aritmetikai műveletek egyszerűsödnek, nő a sebesség, csökken a tárolási igény, így az alkatrészek száma is, megoldandó feladat marad viszont a folyamatos átváltás.

  1. Megfeleljen az univerzális Turing-gépnek

Az univerzális gép elvi alapja A. M. Turing (1912-1954) elméleti munkásságának eredménye, aki bebizonyította, hogyha egy gép el tud végezni néhány alapműveletet, akkor bármilyen számításra képes. Ez az aritmetikai egység beiktatásával érhető el, amelynek az összes számítási és logikai művelet végrehajtása a feladata.

A műveleti sebesség fokozása érdekében került alkalmazásra a központi vezérlőegység, amely meghatározza a program soron következő utasítását, szabályozza a műveletek sorrendjét, és ennek megfelelően vezérli a többi egység működését. Turing kutatása megteremtette a programozható számítógép matematikai modelljét és a digitális számítások elméleti alapját.

  1. Belső program- és adattárolás, a tárolt program elve

A legfontosabb újítás a belső program- és adattárolás elve, melynek segítségével a műveletek automatikusan következnek egymás után, lassú emberi beavatkozás nélkül. A külső tárolás és szakaszos betöltés helyett az adatok és a programok egy helyen, a belső memóriában kerülnek tárolásra. Innen veszi a központi egység a végrehajtandó utasításokat és az azokhoz szükséges adatokat, valamint ide helyezi vissza az eredményt is, így a műveletvégzés sebessége nagyságrendekkel nőhet.

  1. Külső rögzítőközeg alkalmazása (elektronikus, vagy mágneses)

A számítógépnek a bemeneti (input) és kimeneti (output) egységeken keresztül befelé és kifelé irányuló kapcsolatot kell fenntartani a – lehetőleg – elektronikus vagy mágneses tárolóeszközökkel. A bemenő egység a külső tárolóeszközről beolvassa a memóriába a szükséges adatokat, majd a műveletvégzések után a kimenő egység átviszi az eredményeket egy leolvasható tárolóközegre.

Neumann idejében a programtárolás és végrehajtás mechanikus úton – például lyukkártyák vagy tárcsák segítségével – történt. Az elektronikus programtárolás és végrehajtás, valamint a kettes számrendszer használatának bevezetése áttörést jelentett mind a sebesség, mind pedig a felhasználási lehetőségek tekintetében.

Számítógép generációk

A digitális számítógépeket a bennük alkalmazott logikai (kapcsoló) áramkörök fizikai működési elve és integráltsági foka (technológiai fejlettsége) szerint is osztályozhatjuk. Ilyen értelemben különböző számítógép-generációkról beszélhetünk. A továbbiakban a számítógépek fejlődésének főbb állomásait mutatjuk be.

Első generáció

Az ötvenes években a Neumann-elveket felhasználva kezdték építeni az első generációs számítógépeket. Az első elektronikus digitális számítógép az ENIAC. Itt kell megemlítenünk az EDVAC és UNIVAC gépeket is.

Tulajdonságaik:

  • működésük nagy energia-felvételű elektroncsöveken alapult,

  • terem méretűek voltak,

  • gyakori volt a meghibásodásuk,

  • műveleti sebességük alacsony, néhány ezer elemi művelet volt másodpercenként,

  • üzemeltetésük, programozásuk mérnöki ismereteket igényelt.

Második generáció

A tranzisztor feltalálása az ötvenes évek elején lehetővé tette a második generációs számítógépek kifejlesztését.

Tulajdonságaik:

  • az elektroncsöveket jóval kisebb méretű és energiaigényű tranzisztorokkal helyettesítették,

  • helyigényük szekrény méretűre zsugorodott,

  • üzembiztonságuk ugrásszerűen megnőtt,

  • kialakultak a programozási nyelvek, melyek segítségével a számítógép felépítésének részletes ismerete nélkül is lehetőség nyílt programok készítésére,

  • tárolókapacitásuk és műveleti sebességük jelentősen megnőtt.

Harmadik generáció

Az ötvenes évek végén a technika fejlődésével lehetővé vált a tranzisztorok sokaságát egy lapon tömöríteni, így megszületett az integrált áramkör, más néven IC (Integrated Circuit). A hetvenes évek számítógépei már az IC-k felhasználásával készültek.

Tulajdonságaik:

  • jelentősen csökkent az alkatrészek mérete és száma, így a gépek nagysága már csak asztal méretű volt,

  • megjelentek az operációs rendszerek,

  • a programnyelvek használata általánossá vált,

  • megjelentek a magas szintű programnyelvek (FORTRAN, COBOL),

  • műveleti sebességük megközelítette az egymillió elemi műveletet másodpercenként,

  • csökkenő áruk miatt egyre elterjedtebbé váltak, megindult a sorozatgyártás.

Negyedik generáció

A hetvenes évek elején az integrált áramkörök továbbfejlesztésével megszületett a mikrochip és a mikroprocesszor, melyet elsőként az Intel cég mutatott be 1971-ben. Ez tette lehetővé a negyedik generációs személyi számítógépek létrehozását. Ebbe a csoportba tartoznak a ma használatos számítógépek is.

Tulajdonságaik:

  • asztali és hordozható változatban is léteznek,

  • hatalmas mennyiségű adat tárolására képesek,

  • műveleti sebességük másodpercenként több milliárd is lehet,

  • alacsony áruk miatt szinte bárki számára elérhetőek,

  • megjelentek a negyedik generációs programnyelvek (ADA, PASCAL).

Ötödik generáció

Az ötödik generációs számítógépek létrehozására irányuló fejlesztési kísérletek a nyolcvanas évek elején Japánban kezdődtek meg.

Tulajdonságaik:

  • a mesterséges intelligencia (MI) megjelenése,

  • párhuzamos feldolgozás,

  • neurális hálók (működési elvük az emberi agyhoz hasonlít)

  • felhasználó-orientált kommunikáció.

Míg egy mai számítógép használatakor a felhasználó feladata „megértetni” a végrehajtandó műveletsort, addig az ötödik generációs számítógépek hagyományos emberi kommunikáció révén fogják megérteni és végrehajtani a feladatokat. Ezen gépek működési elve úgynevezett neurális hálók használatával valósítható meg, amely a hagyományos rendszerek gyökeres ellentéte.

Az ötödik generációs számítógépek fejlesztése még kezdeti stádiumban van, ezért piacon való megjelenésükre a közeljövőben nem számíthatunk.

Vélemény, hozzászólás?

Az e-mail-címet nem tesszük közzé. A kötelező mezőket * karakterrel jelöltük