Annyiban különbözik az előzőtől az elektronok csak meghatározott sugarú pályákon, keringhettek. A H atomban az elektron az atompályának a sugara. Bármelyik gerjesztett állapotú atompálya sugara, az alapsugár n szerese, ahol n a pozitív egész számot jelenti, ezeket nevezte el kvantumszámnak. Ez a kvantumszám adja meg a gerjesztett elektronok atompálya energiáját.
A Bohr-féle atommodell alapján értelmezhetők az atommag kibocsátási és elnyelési színképei. A Bohr-féle atommodell helyességét a H színkép vonalai bizonyították, ugyanis az ebben megjelenő színkép-vonalak energiája pontosan megegyezett a Bohr-féle atommodellből kiszámított atompályák energiakülönbségeivel. Sommerfield kiegészítette a Bohr-féle atommodellt, azzal, hogy az elektronok az atommag körül nem csak kör alakú, hanem ellipszis alakú atompályán is mozoghatnak. Azt fejezte ki, hogy: vesszük n = 2 energiaszintet. Ehhez tartozik egy kör alakú és egy ellipszis alakú atompálya is. Az atompálya alakját is elnevezték, ami megszabja az atompályák energiáját és sugarát, n = 2 főkvantumszám. Mellékkvantumszám /e/ befolyásolja az atompálya energiáját. A mellékkvantumszám értéke: 0 és n-1 közzé esik. Annyiféle értéket vesz fel, mint a főkvantumszám. A nem kör alakú atompályák csak bizonyos irányban helyezkednek el. Ez szükségessé tette a harmadik kvantumszám bevezetését, a mágneses kvantumszámot.
Mágneses kvantumszám: az atompályák lehetséges elhelyezkedésének a számát adja meg. A három kvantumszámon kívül, három szabály figyelembevételével bármilyen atom elektronjainak elhelyezkedése leírható.
Energiaminimum-elv: az elektronok a lehető legkisebb energiájú atompályákon helyezkednek el.
Pauli-elv: egy atompályán legfeljebb két elektron lehet.
Hund-szabály: az alhéjon az elektronok egymástól a lehető legtávolabb helyezkednek el.